A metagenetic approach for revealing community structure of marine planktonic copepods
Citation
MGnify (2019). A metagenetic approach for revealing community structure of marine planktonic copepods. Sampling event dataset https://doi.org/10.15468/hqedjb accessed via GBIF.org on 2024-12-12.Description
Marine planktonic copepods are an ecologically important group with high species richness and abundance. Here, we propose a new metagenetic approach for revealing the community structure of marine planktonic copepods using 454 pyrosequencing of nuclear large subunit ribosomal DNA. We developed a method for clustering pyrosequencing data into molecular operational taxonomic units (MOTUs) through analysis of an artificial copepod community containing 33 morphologically identified species. The 99% similarity threshold had high species-level resolution for MOTU clustering but overestimated species richness. The artificial community was appropriately clustered into MOTUs at 97% similarity, with little inflation in MOTU numbers and with relatively high species-level resolution. The number of sequence reads per MOTU was correlated with dry weight of that taxon, suggesting that sequence reads could be used as a proxy for biomass. Next, we applied the method to field-collected samples, and the results corresponded reasonably well with morphological analysis of these communities. Numbers of MOTUs were well correlated with species richness at 97% similarity, and large numbers of sequence reads were generally observed in MOTUs derived from species with large biomass. MOTUs were successfully classified at the family level at 97% similarity; similar patterns of species richness and biomass within families were revealed with metagenetic and morphological analyses. At the 99% similarity threshold, MOTUs with high proportions of sequence reads were identified as biomass-dominant species in each field-collected sample. The metagenetic approach reported here can be an effective tool for rapid and comprehensive assessment of copepod community structure.Sampling Description
Sampling
Marine planktonic copepods are an ecologically important group with high species richness and abundance. Here, we propose a new metagenetic approach for revealing the community structure of marine planktonic copepods using 454 pyrosequencing of nuclear large subunit ribosomal DNA. We developed a method for clustering pyrosequencing data into molecular operational taxonomic units (MOTUs) through analysis of an artificial copepod community containing 33 morphologically identified species. The 99% similarity threshold had high species-level resolution for MOTU clustering but overestimated species richness. The artificial community was appropriately clustered into MOTUs at 97% similarity, with little inflation in MOTU numbers and with relatively high species-level resolution. The number of sequence reads per MOTU was correlated with dry weight of that taxon, suggesting that sequence reads could be used as a proxy for biomass. Next, we applied the method to field-collected samples, and the results corresponded reasonably well with morphological analysis of these communities. Numbers of MOTUs were well correlated with species richness at 97% similarity, and large numbers of sequence reads were generally observed in MOTUs derived from species with large biomass. MOTUs were successfully classified at the family level at 97% similarity; similar patterns of species richness and biomass within families were revealed with metagenetic and morphological analyses. At the 99% similarity threshold, MOTUs with high proportions of sequence reads were identified as biomass-dominant species in each field-collected sample. The metagenetic approach reported here can be an effective tool for rapid and comprehensive assessment of copepod community structure.Method steps
- Pipeline used: https://www.ebi.ac.uk/metagenomics/pipelines/4.1
Taxonomic Coverages
Geographic Coverages
Bibliographic Citations
- Hirai J, Kuriyama M, Ichikawa T, Hidaka K, Tsuda A. 2015. A metagenetic approach for revealing community structure of marine planktonic copepods. Mol Ecol Resour vol. 15 - DOI:10.1111/1755-0998.12294
Contacts
originatorPlankton laboratory
metadata author
Plankton laboratory
administrative point of contact
Plankton laboratory