Antarctic Starfish (Echinodermata: asteroidea) from the ANDEEP3 expedition
Citation
Danis, B. & Jangoux M. Contribution to the SCAR-MarBIN Register of Antarctic Marine Species (RAMS): Asteroidea, Echinodermata. Accessed through: De Broyer, C.; Clarke, A.; Koubbi, P.; Pakhomov, E.; Scott, F.; Vanden Berghe, E. and Danis, B. (Eds). The SCAR-MarBIN Register of Antarctic Marine Species (RAMS) https://doi.org/10.15468/zaaqew accessed via GBIF.org on 2024-11-22.Description
This dataset includes information on sea stars collected during the ANDEEP3 expedition, which took place in 2005. The expedition focused on deep-sea stations in the Powell Basin and Weddell Sea. Sea stars were collected using an Agassiz trawl (3m, mesh-size 500µm), deployed in 16 stations during the ANTXXII/3 (ANDEEP3, PS72) expedition of the RV Polarstern. Sampling depth ranged from 1047 to 4931m. Trawling distance ranged from 731 to 3841m. The sampling area ranges from -41°S to -71°S (latitude) and from 0 to -65°W (longitude). A complete list of stations is available from the PANGAEA data system (http://www.pangaea.de/PHP/CruiseReports.php?b=Polarstern), including a cruise report (http://epic-reports.awi.de/3694/1/PE_72.pdf). The dataset includes 50 records, with individual counts ranging from 1-10, reaching a total of 132 specimens.The andeep3-Asteroidea is a unique dataset as it covers an under-explored region of the Southern Ocean, and that very little information was available regarding Antarctic deep-sea star fish. Before this study, most of the information available focused on star fish from shallower depths than 1000m. This dataset allowed to make unique observations, such as the fact that some species were only present at very high depths (Hymenaster crucifer, Hymenaster pellucidus, Hymenaster praecoquis, Psilaster charcoti, Freyella attenuata, Freyastera tuberculata, Styrachaster chuni and Vemaster sudatlanticus were all found below -3770m), while others displayed remarkable eurybathy, with very high depths amplitudes (Bathybiaster loripes (4842m), Lysasterias adeliae (4832m), Lophaster stellans (4752m), Cheiraster planeta (4708m), Eremicaster crassus (4626m), Lophaster gaini (4560m) and Ctenodiscus australis (4489m)). Even if the number of records is relatively small, the data bring many new insights on the taxonomic, bathymetric and geographic distributions of Southern starfish, covering a very large sampling zone. The dataset also brings to light six species, newly reported in the Southern Ocean. The quality of the data was controlled very thoroughly, by means of on-board Polarstern GPS systems, checking of identification by a renowned specialist (Prof. Michel Jangoux, Université Libre de Bruxelles), and matching to the Register of Antarctic Marine Species (RAMS) and World Register of Marine Species (WoRMS). The data is therefore fit for completing checklists, for inclusion in biodiversity patterns analysis, or niche modeling. It also nicely fills an information gap regarding deep-sea starfish from the Southern Ocean, for which data is very scarce at this time. The authors may be contacted if any additional information is needed before carrying out detailed biodiversity or biogeographic studies.
Sampling Description
Study Extent
Four study regions were selected, but the main focus was on the Powell Basin and the Weddell Basin of the Weddell Sea, and their slopes. Two comparative samples were taken further north in the adjacent Agulhas and southern Cape Basins, which are separated from each other by the Agulhas Ridge.Sampling
A 3-m wide Agassiz trawl (AGT) was deployed at two locations in the South Atlantic and 14 locations in the Southern Ocean during the PFS Polarstern expedition ANT XXII/3 WECCON 2005— ANDEEP III in January–April 2005. The sample depths ranged from 1047 to 4931 m, sampling continental slopes of the eastern Weddell Sea (off Kapp Norvegia) and western Weddell Sea and the South Orkney Islands, and deep Cape, Agulhas, Weddell and Powell Basins. At the stations 074-7, 078-11 and 081-9, the cod end mesh size was 10mm, while at all other stations, an inlet of 500 mm mesh size was inserted. The 500 mm mesh size was used because of smaller adult size of deep- sea macrobenthos compared to shelf macrobenthos. The deployment protocol was standardised to 10 min trawling at 1 knot with 1.5x cable length to water depth to facilitate comparability between the different sites. At station 059-10, the AGT was trawled for 20 min. The haul distances were calculated from the time the Agassiz trawl travelled on the ground. The tension meter of the winch clearly indicated when the AGT left the seabed. Haul length varied from 731 to 3841m. Sample volumes were estimated and the general sediment composition was noted. Mega- and larger macrofauna were separated by eye on deck. The taxa of each trawl sample were identified to morphospecies level.Quality Control
The initial geo-referencing was done by means of the RV Polarstern onboard GPS systems. Geospatial data was directly imported from those systems to avoid potential errors in transcribing. Samples identification was supervised and checked by Michel Jangoux, Marine Biology Lab, Université Libre de Bruxelles. The taxonomic names were matched against two authoritative, expert-driven species registers: the Register of Antarctic Marine Species (RAMS) and the World Register of Marine Species (WoRMS). The automatic matching tools available on both these web sites were utilized.Method steps
- see quality control above.
Additional info
marine, harvested by iOBISTaxonomic Coverages
This dataset focuses on Starfish (Echinodermata: Asteroidea). It includes data on 6 orders (Forcipulatida, Notomyotida, Paxillosida, Spinulosida, Valvatida, Velatida) and 11 families (Asteriidae, Astropectinidae
Benthopectinidae, Echinasteridae, Freyellidae, Goniasteridae, Labidiasteridae, Notasteriinae, Porcellanasteridae, Pterasteridae, Solasteridae). The most represented families are the Astropectinidae (Paxillosida), followed by Porcellanasteridae (Paxillosida) and Pterasteridae (Velatida).
-
Dytaster felixrank: species
-
Freyella attenuatarank: species
-
Psalidaster mordaxrank: species
-
Lophaster gainirank: species
-
Bathybiaster loripesrank: species
-
Psilaster charcotirank: species
-
Pteraster hirsutusrank: species
-
Freyastera tuberculatarank: species
-
Hymenaster pellucidusrank: species
-
Hymenaster praecoquisrank: species
-
Freyellarank: genus
-
Benthopecten pediciferrank: species
-
Hyphalaster inermisrank: species
-
Eremicaster pacificusrank: species
-
Lophaster stellansrank: species
-
Eremicaster crassusrank: species
-
Rhopiella hirsutarank: species
-
Notioceramus anomalusrank: species
-
Hymenaster cruciferrank: species
-
Styracaster chunirank: species
-
Cheiraster planetarank: species
-
Pteraster spinosissimusrank: species
-
Hyphalaster scotiaerank: species
-
Notasterias pedicellarisrank: species
-
Diplasterias bruceirank: species
-
Lysasterias adeliaerank: species
-
Asteriidaerank: family
-
Astropectinidaerank: family
-
Benthopectinidaerank: family
-
Echinasteridaerank: family
-
Freyellidaerank: family
-
Goniasteridaerank: family
-
Labidiasteridaerank: family
-
Notasteriinaerank: family
-
Porcellanasteridaerank: family
-
Pterasteridaerank: family
-
Solasteridaerank: family
-
Forcipulatidarank: order
-
Notomyotidarank: order
-
Paxillosidarank: order
-
Spinulosidarank: order
-
Valvatidarank: order
-
Velatidarank: order
-
Bathibiasterrank: genus
-
Cheirasterrank: genus
-
Diplasteriasrank: genus
-
Dytasterrank: genus
-
Eremicasterrank: genus
-
Freyasterarank: genus
-
Freyellarank: genus
-
Hymenasterrank: genus
-
Hyphalasterrank: genus
-
Lophasterrank: genus
-
Lysasteriasrank: genus
-
Marsipasterrank: genus
-
Notasteriasrank: genus
-
Notioceramusrank: genus
-
Parachasterrank: genus
-
Psalidasterrank: genus
-
Psilasterrank: genus
-
Rhopiellarank: genus
-
Ripasterrank: genus
-
Styracasterrank: genus
Geographic Coverages
ANDEEP 3 cruise track, from Cape Town (SA) to Punta Arenas (CH). Four study regions were selected, but the main focus was on the Powell Basin and the Weddell Basin of the Weddell Sea, and their slopes. Two comparative samples were taken further north in the adjacent Agulhas and southern Cape Basins, which are separated from each other by the Agulhas Ridge. Four study regions were selected, but the main focus was on the Powell Basin and the Weddell Basin of the Weddell Sea, and their slopes. The major South Atlantic deep-sea basins started forming during Jurassic and Cretaceous times in connection with the Gondwana break-up and seafloor spreading (Brandt et al., 2004a, 2007; Lawver and Gahagan, 2003). The Weddell Basin is separated from the northerly basins by the South- west India Ridge (LaBrecque, 1986). The Powell Basin on the western side of the Weddell Sea was formed in the Tertiary by geological processes opening the Drake Passage and tectonic movements in the Scotia Sea (Lawver and Gahagan, 2003; Mitchell et al., 2000). The oceanography of the deep South Atlantic seafloor is defined by its prominent water mass, the Antarctic Bottom Water (Tomczak and Godfrey, 2001). The Antarctic Bottom Water expands north- wards into the Atlantic basins east and west of the Mid-Atlantic Ridge, like the Agulhas Basin, but can only enter the basins north of the Walvis Ridge (e.g., Cape Basin) via the northerly Romanche Fracture Zone. The Weddell Sea Bottom Water (WSBW), defined by a temperature of 0.7 1C and a salinity of 34.64 ppt (Orsi et al., 1993), is the main water mass above the Weddell Sea benthos (Fahrbach et al., 2001). The WSBW flows from the western Weddell Sea into the Scotia Sea and South Sandwich Forearc, and its circulation is driven by the Weddell Sea gyre. The sediments in the bathyal and abyssal Weddell and Powell Basins are dominated by silt and clay.
Bibliographic Citations
- Griffiths HJ, Danis B, Clarke A (2010) Quantifying Antarctic marine biodiversity: The SCAR-MarBIN data portal. Deep Sea Research Part II: Topical Studies in Oceanography (October): 1-12. - doi:10.1016/j.dsr2.2010.10.008
- Brandt A, De Broyer C, Gooday AJ, Hilbig B, Thomson MRA (2004) Introduction to ANDEEP (ANtarctic benthic DEEP-sea biodiversity: colonization history and recent community patterns)—a tribute to Howard L. Sanders. Deep-Sea Research II 51: 1457-1465. -
- Brandt A, De Broyer C, De Mesel I, Ellingsen KE, Gooday AJ, Hilbig B, Linse K, Thomson MRA, Tyler PA (2007) The Biodiversity of the Deep Southern Ocean Benthos. Philosophical Transactions of the Royal Society B: Biological Sciences 362 (1477) (January): 39-66. - doi:10.1098/ rstb.2006.1952.
- Lawver LA, Gahagan LM (2003). Evolution of Cenozoic seaways in the circum-Antarctic region. Palaeogeography Palaeoclimatology Palaeoecology 198: 11-37. -
- LaBrecque JL (1986). South Atlantic Ocean and Adjacent Continental Margins, Atlas 13. Ocean Margin Drilling Program Atlas Series 13. -
- Mitchell NC, Livermore RA, Fabretti P, Carrara G (2000). The Bouvet triple junction, 20 to 10Ma, and extensive transtensional deformation adjacent to the Bouvet and Conrad transforms. Journal of Geophysical Research-Solid Earth 105: 8279-8296. -
- Tomczak M, Stuart Godfrey JS (2003) Regional Oceanography: an Introduction 2nd edn, Daya Publishing House, xi+390p - http://www.cmima.csic.es/mirror/mattom/ regoc/pdfversion.htmlS.
- Orsi AH, Nowlin WD, Whitworth T (1993) On the circulation and stratification of the Weddell Gyre. Deep-Sea Research 40: 169-203. -
- Fahrbach E, Harms A, Rohardt G (2001). Flow of bottom water in the northwestern Weddell Sea. Journal of Geophysical Research Ocean 106: 2761-2778. -
Contacts
Bruno Danisoriginator
ANTABIF
29, rue Vautier
Brussels
1000
BE
email: bruno.danis@gmail.com
homepage: http://www.biodiversity.aq
Bruno Danis
metadata author
ANTABIF
29, rue Vautier
Brussels
1000
BE
email: bruno.danis@gmail.com
homepage: http://www.biodiversity.aq
Michel Jangoux
principal investigator
position: Professor
Université Libre de Bruxelles
50, av FD Roosevelt
Brussels
1050
BE
Telephone: +32 (0) 2 650 24 12
email: Michel.Jangoux@ulb.ac.be
homepage: http://www.ulb.ac.be//sciences/biomar/
Jennifer Wilmes
content provider
Université Libre de Bruxelles
50, av FD Roosevelt
Brussels
1050
BE
email: wilmes.jennifer@gmail.com
homepage: http://www.ulb.ac.be//sciences/biomar/
Bruno Danis
administrative point of contact
ANTABIF
29, rue Vautier
Brussels
1000
BE
email: bruno.danis@gmail.com
homepage: http://www.biodiversity.aq